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Introduction
The potential of mobile microscopy for diagnostic purposes in human and veterinary 
medicine has already been investigated using different setups and for many applications. 
The utilisation varies between the diagnosis of infectious diseases such as tuberculosis, 
the identification of parasites (malaria, helminth infections) and the detection of viruses 
or bacterial spores [1]. The basis are primarily constructions based on a special hardware 
and a smartphone. A differentiation can be made between lens based [2–4], lensless [5] 
or digital holographic microscopy [6, 7] and ptychographic systems [8]. The lens based 
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systems consist of conventional microscopy components (lenses, objective, eyepiece) 
and their accuracy or resolution and the field of view are strongly dependent on the 
efficiency of the smartphone camera used. In lensless microscopy, the sample is usually 
placed very close to the camera sensor and illuminated vertically. To improve resolution, 
digital holographic microscopy not only illuminates the cells or objects to create a wave 
front, but also creates an inference pattern by generating a reference beam. With both 
techniques, the image must be reconstructed [5]. Overall for lensless and holographic 
systems commercial mobile systems are generally not available and the reconstruction of 
the images is algorithmically complex [6]. For ptychographic systems a reconstruction is 
still necessary but easier in comparison to the aforementioned construction.

The use of a mobile phone has the advantage that it can be used directly for image 
acquisition, storage and especially for evaluation. In addition, cloud resources can be 
accessed via Internet connection to perform particularly computationally intensive 
examinations in a timely manner and/or to contact a doctor or medical facility. The 
development and utilisation of reliable point-of-care (POC) diagnostic tools is of out-
standing importance for the medical care of the population of infrastructural underde-
veloped regions. The lack of specialized professionals and facilities makes the application 
of a low-cost smartphone-based mobile microscope particularly advantageous for timely 
and proper treatment [1].

In this context, blood testing is a simple but beneficial opportunity to assess the gen-
eral state of health and detect various signs of disease. With the help of a microscopic 
blood examination a specialist can determine the number of red blood cells (RBC), 
white blood cells (WBC), platelets (PLT) and notice morphological changes. For exam-
ple, a deficiency of RBC is an indicator of anemia, WBC provide information about a 
possible infection, the number of PLT is crucial for blood coagulation and morphologi-
cal changes can provide information about sickle cell disease [9].

Many scientists have already worked on automated detection of different blood cells 
from microscopic images. Previous approaches use conventional image recognition for 
segmentation of different blood components [10]. These efforts are focused on methods 
such as thresholding [4, 11–15], watershed algorithm [11, 12], morphological filters [12, 
14, 16], color-based conversion/segmentation [4, 12, 13, 15–17], histogram equalization 
[14], active contours [3, 11] and haar cascade [14]. The results might reach the desired 
accuracy, but these approaches are very error-prone towards minimal changes in image 
acquisition, such as contrast, exposure, resolution etc. [18]. In addition, they mostly 
focus on only one [3, 12, 14–17] or two [4, 10, 11] cell types and are rarely applied on a 
mobile device [13, 14]. Recent methods for image segmentation are increasingly based 
on machine learning (ML)/deep learning (DL) strategies due to their robustness, higher 
accuracy, flexible deployment and generalization ability [18–20]. A distinction can be 
made between simple object detection, semantic- and instance segmentation approaches 
[19, 20]. Instance segmentation allows an exact delineation of each cell and detection of 
its morphology. Therefore, it is a beneficial method to make particularly precise state-
ments about the different blood cell types. Current research on blood cell segmenta-
tion of microscopic images focuses on networks such as YOLO [21] and region-based 
convolutional neural networks (R-CNN) [22] for object detection; U-Net [23], Seg-Net 
[24] and fully convolutional networks (FCN) [25] for semantic segmentation and Mask 
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R-CNN [26] for instance segmentation. There is only one published example of research-
ers Alam and Islam [27] using the YOLO network to detect all blood cell types (RBC, 
WBC, PLT). For training, they use the Blood Cell Count Dataset (BCCD) [28], which 
provides stained, microscopic blood images and annotations. They achieve 96.09% accu-
racy for detection of RBC, 86.89% for WBC and 96.36% for PLT. However, their object 
segmentation approach does not allow accurate delineation of the cell membrane and 
they require K-nearest neighbour (KNN) and intersection over union (IoU) based post-
processing as the PLT are often detected twice. The Faster R-CNN [29] approach is used 
to segment either the WBC [30] or RBC [31] only. In publications on semantic seg-
mentation of blood cells, U-Net [32–34], Seg-Net [35] and FCN [31] are appropriately 
adapted to likewise segment only one [33, 34] to two [32, 35] cell types. There are very 
few publications that establish instance segmentation using Mask R-CNN for RBC and 
WBC [36] or only WBC [37] detection. Dhieb et al. [36] achieve 92% accuracy for detec-
tion of RBC and 96% for WBC and Fan et al. [37] achieve 99% average accuracy for seg-
mentation masks of WBC.

In order to train the DL algorithms, different publicly available databases such as 
BCCD [27, 29, 30], acute lymphoblastic leukemia image database (ALL-IDB) [34, 35, 38] 
or self-made microscopic images [31, 32] are used. However, all of them were acquired 
with a laboratory microscope and high quality setups. Only one paper uses image data 
acquired with a smartphone camera, but also generated with an automated laboratory 
microscope [32]. Consequently, there is no DL-instance segmentation approach for 
all three blood cell types, which uses microscopic images from a mobile setup whose 
images can be generated cheaply and quickly, but cannot match the quality of images 
from publicly available databases or laboratory microscopes.

Methods
Sample preparation and microscopy

Donor for all blood samples used in this study is the first author. A small drop of cap-
illary blood was obtained by fingerprick and was taken up with the middle of a cover 
slip. Waldeck’s Testsimplets® [39] were used to stain the different blood cell types. The 
cover slip with the drop of blood is placed on the prestained area of the slide. After 10 to 
15 min the slide was microscopically evaluated. For that the Bresser Erudit DLX micro-
scope [40] with an objective with 60 × magnification and a numerical aperture of 0.85 
was used [41], resulting in a resolution of 0.32 µm. The eyepiece provides an additional 
10 × enlargement resulting in a total magnification of 600x. For image acquisition the 
microscopic ocular was removed and a digital eyepiece camera with 5 megapixels [42] 
was inserted. This setup produces an equivalent magnification of 600x. A commercially 
available smartphone (Xiaomi Mi A2 [43]) was connected via USB and color micro-
scopic images with a resolution of 1440 × 1080 pixels were taken with the mobile app 
OTG view [44]. Before the annotation was started all images were cut to a resolution 
of 1000 × 1000 pixels and 96 dots per inch (dpi) to provide a square, standard size for 
different DL networks. One pixel corresponds to 0.1  µm. With the goal of increasing 
the robustness of the DL algorithms, the infrared (IR)/ultraviolet (UV) blocking filter 
of the ocular camera was removed for some image acquisitions. This resulted in artifi-
cially noisy and color-shifted images, which could also be generated naturally by mobile 
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use at different locations. A rapid analysis and inexperience of the performing person 
could produce inaccurate images that are not perfectly focused and make it difficult to 
optimally set the lighting, which is also influenced by ambient parameters (artificial light 
indoors or sunlight outdoors).

Dataset and image labelling

The dataset contains 40 microscopic pictures and each recording includes approx. 150–
200 RBC, 2–4 WBC and 10–15 PLT. For training and validation a total of 5101 RBC, 
71 WBC, 432 PLT were used. Images were prepared and annotated with the software 
labelme [45] and CVAT [46]. 30 images were taken with the normal camera setup (high 
quality images, Fig. 1a) and for ten images the color filter of the camera was removed 
(low quality images, Fig. 1b).

All RBC, WBC and PLT were labelled with polygon masks. 24 images were chosen for 
the training set (18 high quality and six low quality images) and eight images for the vali-
dation set (six high quality and two low quality images). A threefold cross validation [47] 
was performed with different splits of these 32 images resulting in three training and 
three validation sets. The remaining eight images (six high quality and two low quality 
images) were used for the test set containing 997 RBC, 14 WBC and 75 PLT and served 
to confirm the results.

DL algorithms and training

For the targeted instance segmentation task of all blood cells, four different DL algo-
rithms were implemented, optimised and the results evaluated. The well-known and 
extensively used Mask R-CNN [26] consists of 2 stages and is based on Faster R-CNN 
[29], which uses a region proposal network to predict bounding boxes for the different 
object classes. On top of this, Mask R-CNN predicts segmentation masks for the indi-
vidual instances. Training and validation were done with the Mask R-CNN implementa-
tion of the toolbox MMDetection provided by Chen et al. [48]. Besides, Mask R-CNN 

Fig. 1  Microscopic images of stained blood samples at 600 × magnification. The preparation and microscopy 
of the blood samples were performed as described in the section "Sample preparation and microscopy". a 
High quality image, b low quality image. RBC are stained light red, WBC and PLT are stained dark purple
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is the predecessor of Mask Scoring R-CNN (MS R-CNN) [49]. This network signifi-
cantly improves the accuracy of instance masks in the 2017 common objects in context 
(COCO) challenge [50]. The additional implementation of a network block termed as 
the MaskIoU head, which is trained with the quality of the predicted instance masks, 
improves the accuracy of the mask predictions. D2Det [51] is another two-stage detec-
tor based on the Faster R-CNN framework [29]. In addition, discriminative region of 
interest (RoI) pooling and dense local regression is applied for instance segmentation 
to improve accuracy and speed. YOLACT [52] is a one-stage framework for real time 
instance segmentation, which is characterized by an excellent inference speed, but there-
fore shows some drawbacks in segmentation accuracy. The network predicts a certain 
number of prototype masks that are generated by FCN [25] and calculates mask coeffi-
cients in parallel, which are multiplied together for each instance to create a linear com-
bination of output masks. Training parameters for all frameworks have been customized 
for the existing graphics processing unit (GPU) infrastructure (GPU NVIDIA Tesla 
V100, DDR4-RAM 384 GB) and the task of blood cell instance segmentation. The fol-
lowing training parameters are common between adapted frameworks: training method 
stochastic gradient descent (SGD), momentum 0.9, backbone residual network with 101 
layers (ResNet-101) [53] including feature pyramid network (FPN) [54] and augmenta-
tion methods such as resizing, random flips and change in hue etc. were applied. Fur-
thermore, pre-trained weights based on ImageNet [55] and COCO datasets [50] were 
used for all frameworks. For YOLACT and D2Det the settings for Non-Maximum Sup-
pression (NMS) were adjusted. In addition, anchor box size/scales were adapted for the 
detection of small objects and the number of possible detections per image respectively 
the number of trainable masks were increased. For YOLACT the number of predictions 
for NMS was changed from 200 to 400, the confidence threshold was decreased from 
0.05 to 0.01 and the boxes threshold was modified from 0.5 to 0.1. For the anchor scales 
the configuration of YOLACT++ [56] was used. The number of masks was increased 
from 250 to 500 as well as the number of possible detections per image from 300 to 500. 
For D2Det the NMS threshold for the region proposal network (RPN) was decreased 
from 0.7 to 0.3 and the anchor scales were modified from 8 to 2. The number of detec-
tions per image were increased from 100 to 300. For MS R-CNN the number of possible 
detections per image were also increased in the MaskIoU head from 100 to 500. Other 
training parameters that vary between the different frameworks are shown in Table 1. 
The hyperparameters of the original networks and the modified values are listed. All 
networks were trained until no significant loss could be detected. The learning rate and 

Table 1  Training parameters for Mask R-CNN, MS R-CNN, D2Det and YOLACT​

* Calculated by: # epoch = number of iterations*batch size/number of training images

Framework # epoch Learning rate Batch size Weight 
decay

Basis for 
pretrained 
weightsOriginal Modified Original Modified Original Modified

Mask R-CNN 12 1000 0.02 0.02 2 2 0.0001 COCO [57]

MS R-CNN 3750* 1000* 0.02 0.00025 16 1 0.0001 ImageNet [58]

D2Det 24 3000 0.02 0.02 2 2 0.0001 COCO [59]

YOLACT​ 66.666* 1000–2000 0.0001 0.0001 8 2 0.0005 COCO [60]
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batch size were chosen according to the GPU memory. The weight decay was applied 
according to the defaults in the available code from Github.

Results
In this research work, different instance segmentation frameworks were modified, 
trained, optimised and their performance evaluated. The goal was to achieve the most 
accurate segmentation and classification of the blood components RBC, WBC and PLT 
on microscopic images generated with a mobile setup and a smartphone. Supported by 
a threefold cross validation, three different models were trained for each DL framework. 
The performance of these models is evaluated in the following sections. The results for 
the validation sets and the test set are presented visually (representation of predicted 
detections, including segmentation masks) and in addition the findings are described 
qualitatively (mean average precision (mAP) and mean average recall (mAR) of segmen-
tation masks) and quantitatively (number of detected blood components).

Visual results

Visually, the output has been unified for all trained frameworks. The predicted output 
masks were generated with an IoU threshold of 0.5. RBC are displayed in red, WBC in 
blue and PLT in green. Furthermore, each detection is labelled with the corresponding 
class and confidence score (quality of predicted mask and detected class). Figures 2 and 
3 show the results of a cross validation output model for the frameworks Mask R-CNN, 
MS R-CNN, D2Det and YOLACT. In both Figures the detection results for all trained 
models basically do not show any difference between high and low quality images. All 
frameworks show a high confidence score for the different classes and accurate masks 
for WBC and PLT. The visual results for Mask R-CNN in Figs. 2b and 3b show several 
missing PLT detections. For trained MS R-CNN some RBC are not detected in Fig. 2c 

Fig. 2  Visual representation of detected blood components (RBC—red, WBC—blue, PLT—green). a 
Original image b Mask R-CNN, c MS R-CNN, d D2Det and e YOLACT. Detections are shown at a high quality 
microscopic image of a stained blood sample at 600 × magnification from the validation set
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and some PLT are missing in Fig. 3c. D2Det failed to detect some PLT in Figs. 2d and 3d. 
Trained YOLACT shows slightly noisy masks for RBC and a few misdetections at the 
image edges in both pictures.

In Fig. 4, a trained YOLACT model was used for a low quality image of the test set. 
The result also shows very good detection and segmentation output with no significant 
differences to results from the validation set.

Qualitative results

For the assessment of the segmentation results, the mAP and the mAR were determined 
with IoU’s of 0.50 to 0.95 (step size 0.05) with a maximum of 100 detections aided by the 

Fig. 3  Visual representation of detected blood components (RBC—red, WBC—blue, PLT—green). a 
Original image b Mask R-CNN, c MS R-CNN, d D2Det and e YOLACT. Detections are shown at a low quality 
microscopic image of a stained blood sample at 600 × magnification from the validation set

Fig. 4  Visual representation of detected blood components (RBC—red, WBC—blue, PLT—green). a Original 
image b Trained YOLACT for unseen data. Detections are shown at a low quality microscopic image of a 
stained blood sample at 600 × magnification from the test set
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COCO evaluation code [61]. In Table 2, the average of these values and their standard 
deviations (obtained by cross validation) for the trained models on the validation and 
the test set are shown and the best scoring outputs are marked in bold. mAP and mAR 
are mainly stable for the different models of cross validation, as indicated by the low 
standard deviation of mostly less than 0.05. Moreover, the different frameworks show 
the same tendencies for both parameters, e. g. MS R-CNN performs best for WBC in the 
validation set or YOLACT for PLT in the test set.

For a more straightforward visualisation, the mAP for both data sets is shown in Fig. 5 
(the mAR performs equivalently and is therefore not shown).

The difference between validation and test set of each trained framework is mostly 
only 0.01 to 0.05 of the respective mAP. Larger deviations are only found in the values 
for the RBC for Mask R-CNN and YOLACT and for the WBC and PLT for MS R-CNN. 
Despite this, the results indicate a good generalisation ability of the models. The visual 
results from the previous section (Figs. 2 and 3) are also well reflected. The mAP of all 
models ranges between 0.42 and 0.61 for the RBC and between 0.45 and 0.91 for the 
WBC, confirming the high accuracy of masks and confidence scores for these classes. 
YOLACT achieves the lowest value for the RBC with a mAP of 0.42, visually also detect-
able by misdetections and noisy masks. The best performance for all blood components 
is achieved with the MS R-CNN model for the validation set and with YOLACT for the 
test set. With Mask R-CNN, the PLT in particular are poorly segmented and detected, 
which is also evident in Figs. 2a and 3a. However, the other trained models also achieve 
a good average output. Larger differences and the worst segmentation performance for 
all models is evident in the PLT. The reason for this is that basically smaller objects are 
more difficult to recognize and all frameworks were pre-trained and optimised for the 
COCO dataset. The smallest objects in this dataset correspond to 4% of the image size 
[50]. The PLT in the blood images, with an average size of 25 × 25 pixels, correspond to 
only 2.5% of the image size.

Quantitative results

For the validation and the test set, the number of ground truth (GT) and predicted detec-
tions were also calculated for each class. In Table 3 the sum of the values for each cross 
validation for the trained models are shown and results closest to the GT are marked in 

Table 2  mAP and mAR at IoU’s of 0.50 to 0.95 for the validation (v) and test set (t)

IoU’s of 0.50 to 0.95 with maximum of 100 detections for trained Mask R-CNN, MS R-CNN, D2Det and YOLACT for the 
validation and test set

Framework Dataset Ø mAP ± σ Ø mAR ± σ

All RBC WBC PLT All RBC WBC PLT

Mask R-CNN v 0.43 ± 0.02 0.46 ± 0.02 0.68 ± 0.06 0.15 ± 0.01 0.46 ± 0.02 0.48 ± 0.02 0.72 ± 0.06 0.18 ± 0.02

t 0.47 ± 0.01 0.60 ± 0.01 0.65 ± 0.02 0.16 ± 0.02 0.50 ± 0.01 0.63 ± 0.01 0.67 ± 0.02 0.18 ± 0.02

MS R-CNN v 0.67 ± 0.01 0.53 ± 0.02 0.91 ± 0.01 0.56 ± 0.00 0.69 ± 0.01 0.54 ± 0.02 0.93 ± 0.01 0.59 ± 0.02

t 0.48 ± 0.02 0.58 ± 0.01 0.57 ± 0.06 0.28 ± 0.01 0.53 ± 0.01 0.63 ± 0.01 0.61 ± 0.05 0.36 ± 0.02

D2Det v 0.42 ± 0.04 0.56 ± 0.02 0.46 ± 0.05 0.24 ± 0.07 0.47 ± 0.04 0.60 ± 0.02 0.51 ± 0.05 0.30 ± 0.07

t 0.44 ± 0.01 0.61 ± 0.02 0.45 ± 0.01 0.25 ± 0.03 0.49 ± 0.01 0.65 ± 0.02 0.50 ± 0.01 0.33 ± 0.04

YOLACT​ v 0.45 ± 0.03 0.42 ± 0.02 0.71 ± 0.08 0.24 ± 0.05 0.49 ± 0.03 0.44 ± 0.02 0.74 ± 0.07 0.28 ± 0.09

t 0.50 ± 0.01 0.56 ± 0.02 0.67 ± 0.02 0.28 ± 0.03 0.55 ± 0.00 0.60 ± 0.01 0.69 ± 0.02 0.37 ± 0.04
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bold. Mask R-CNN and D2Det provide the best results on quantitative accuracy for the 
RBC. For WBC, Mask R-CNN and MS R-CNN show nearly 100% detection accuracy 
for both data sets. But again, the weak performance of Mask R-CNN for the detection of 
PLT is significant.

For evaluation purposes, the predicted detections in % of the GT for the validation and 
test set and the different frameworks are shown in Fig. 6. The average performance for 
all blood components is shown as a separate bar in violet.

Similar to the qualitative results, only minor deviations between validation and test set 
are evident for the individual networks and the standard deviation is also mostly below 
5%. Larger differences are only found for the PLT, as their small size and the associated 
detection difficulty can lead to greater fluctuations. However, these results once again 
confirm the generalisability of the models. On average, YOLACT performs best for all 
types of blood cells, followed by MS R-CNN, D2Det and Mask R-CNN. The detection 

Fig. 5  Bar chart of mAP values for the validation and test set for the different frameworks. The mAP at IoU’s of 
0.50 to 0.95 for the average of all blood cells, RBC, WBC and PLT is shown for trained Mask R-CNN, MS R-CNN, 
D2Det and YOLACT​

Table 3  Number of detected blood cells (RBC, WBC, PLT) for the validation (v) and test set (t)

Trained Mask R-CNN, MS R-CNN, D2Det and YOLACT​

GT numbers: ∑ validation sets RBC—3825, WBC—54, PLT—328

∑ test set RBC—2991, WBC—42, PLT—225

Framework Dataset ∑ # detections

RBC WBC PLT

Mask R-CNN v 3662 54 158

t 3058 41 100

MS R-CNN v 3636 54 256

t 3059 40 193

D2Det v 3775 55 242

t 3089 40 184

YOLACT​ v 3427 51 311
t 2861 38 231



Page 10 of 14Pfeil et al. BMC Bioinformatics           (2022) 23:65 

results for RBC and WBC show very good scores for all models and frameworks with 
values above 90%. Only the detection performance of YOLACT for the RBC is a bit 
weaker in comparison to the other models. However, this is also clearly visible in the 
visual results where some RBC were not detected at the edges of the image. However, 
this model is able to detect most PLT compared to the other frameworks and achieves 
over 95% detection accuracy for both data sets.

Discussion
In principle, all modified and trained models (Mask R-CNN, MS R-CNN, D2Det and 
YOLACT) achieve good to very good results in visual output, qualitatively and quantita-
tively, and could possibly be used for diagnostic purposes. The adjustment and optimisa-
tion of training parameters was absolutely necessary, as the original versions delivered 
very weak performance or were even unable to detect some blood cell types. To improve 
the relatively weak detection performance of Mask R-CNN (Ø 47% of GT for valida-
tion and test set) for PLT, further optimisation of the anchors to detect smaller objects 
should be performed. Furthermore, YOLACT shows very good results for the detection 
of WBC and PLT, but the performance for RBC is a bit weaker as these are often not 
detected at the image edges. Whether the detection of cells that are partly outside the 
field of view will be advantageous for diagnostic applications in the future has yet to be 
assessed. Otherwise, these cells could be ignored and would significantly improve the 
overall performance of the network. Pre-processing of the images with traditional image 
recognition algorithms such as thresholding, k-means clustering, contrast enhancement 
etc. are also conceivable to improve the overall performance.

The performance of the optimised instance segmentation models for the recognition 
of different blood components is also compared with existing similar research. Dhieb 
et al. [36] used the Mask R-CNN network as a basis for the instance segmentation of two 
blood components (no PLT) and achieved a quantitative accuracy of 92% for the detec-
tion of RBC and 96% for WBC. The detection accuracy of the models presented in this 

Fig. 6  Bar chart of the proportion of detected blood components for the different frameworks. The 
percentage of the average of all detected blood cells, RBC, WBC and PLT of the GT is shown for trained Mask 
R-CNN, MS R-CNN, D2Det and YOLACT​
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publication is up to 7% higher for RBC (Ø 99% for Mask R-CNN and MS R-CNN of GT 
for validation and test set). For WBC, Mask R-CNN, MS R-CNN and D2Det achieve a 
better result for the detection performance (Ø 99% for Mask R-CNN and D2Det, Ø 98% 
for MS R-CNN of GT for validation and test set). The training and validation set in this 
work contain in total only 71 WBC while Dhieb et al. [36] used a dataset of 150 images 
with 24.000 cells [62]. However, due to applied cross validation including calculated 
standard deviations, the comparison between the results of the validation and test set 
allow a statistically significant statement. The researchers in the aforementioned work 
did not perform a qualitative evaluation of the segmentation results. Alam and Islam 
[27] use YOLO as a basis for object detection of all blood components and achieve a 
quantitative accuracy for the detection of RBC of 96.09%, 86.89% for WBC and 96.36% 
for PLT. Again, the detection accuracy of the models in this publication is up to Ø 3% 
higher for RBC and Ø 13% higher for WBC. For PLT, only YOLACT achieves a higher 
detection performance of Ø 99% of GT for validation and test set. The authors achieved 
a mAP of 0.6236 as a qualitative measure, thus being slightly higher than the MS R-CNN 
presented (Ø 0.57 for validation and test set). However, Alam and Islam [27] use only 
object detection and not, as in this work, significantly more advanced instance segmen-
tation. Both publications also use datasets [28, 61] with images taken at 1000 × magnifi-
cation and standard microscopes, so that a significantly better resolution is available and 
the detection of the cells is consequently easier.

To further improve the presented models and increase their accuracy, the dataset 
should be enlarged to provide more images for training and validation. Furthermore, 
additional robustness can be generated by using other noise parameters to degrade the 
image quality, such as changing the illumination, using a camera with lower resolution 
etc.

Conclusions
In this research work, the performance of DL-based instance segmentation algorithms 
for the detection of all blood cell types on microscopic images taken with a mobile 
microscope and a smartphone is thoroughly investigated. Training and optimisation of 
parameters for Mask R-CNN, MS R-CNN, D2Det and YOLACT network architectures 
were conducted. After examining the visual, qualitative and quantitative results, MS 
R-CNN performs in total best and achieved a Ø mAP of 0.57 and Ø mAR of 0.61 for the 
validation and test set for the segmentation of all blood cell types and was able to detect 
Ø 93% of all cells from both sets. All frameworks surpass their source versions in terms 
of visual output, qualitative (mAP, mAR) and quantitative results and their feasibility 
and effectiveness were demonstrated. Although some smartphone-based microscopes 
are already commercially available, the presented solution is innovative and its deploy-
ment is advantageous because mobile use of the optical system is already conceivable 
(lightweight, rechargeable microscope, digital eyepiece camera and mobile phone). A 
suitable smartphone application has to be developed for a location-independent evalua-
tion of microscopic blood images. Future work will investigate the applicability of these 
algorithms in such an application allowing mobile analysis to be performed directly at 
the POC. In addition, further reduction in the size of the hardware will also increase 
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mobility. Providing an autofocus and an automatic image capture are further adaptation 
options that enable easy utilisation regardless of location.
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